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Abstract: - Sudden cardiac arrest (SCA) is responsible for half of all deaths due to heart disease. Most SCAs 
could be avoided by obtaining an early diagnosis from ECG recordings. The long-term monitoring systems 
record a large number of beats and require automatic detection and classification of the premature ventricular 
contraction (PVC) beats. Several ECG beat classification algorithms based on different methodologies have 
been developed and implemented. This paper presents a novel algorithm for automatic recognition of a 
premature ventricular contraction (PVC) beat based on a three-bit linear prediction error signal (LPES). The 
algorithm is composed of three main stages: signal denoising and QRS detection; nonlinear transformation of 
the linear prediction error signal e(n); and a sliding window. The proposed algorithm was tested using ECG 
signals from two recognized arrhythmia databases, MIT-BIH and AHA. The selected signals contained normal 
beats as well as abnormal beats. Sensitivity and specificity parameters were used to measure the accuracy of the 
proposed classifier. The sensitivity achieved using the proposed algorithm was 96.3% and the specificity was 
99.0%. In addition to its accuracy, the main advantages of using the proposed algorithm are its simplicity and 
robustness.  
Key-Words: - ECG, QRS detection, Signal processing, PVC recognition, Linear Prediction, LPES, Sliding

 Window, Autocorrelation.
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1 Introduction 
A recorded ECG signal arises from the activities 

of the myocardium (heart muscle). The signal 
consists of three main waves, referred to as P, QRS 
complex and T waves, where the P wave represents 
the depolarisation of the atrium, the QRS complex 
wave represents the ventricular depolarisation and 
the T wave reflects repolarisation of the ventricles. 
The contraction and expansion process of the 
myocardium normally starts after receipt of a trigger 
signal from the sinoatrial (SA) node, which serves 
as an internal pacemaker. However, the heartbeat 
can also be initiated by the Purkinje fibres rather 
than by the SA node. This initiation causes ventricle 
contraction without a prior atrium contraction, and 
the resulting beat is called premature ventricular 
contraction (PVC). A single PVC beat does not 
usually pose a danger; however, frequent or 
consecutive PVC beats may be an indication of a 
heart malfunction that can lead to sudden cardiac 
arrest (SCA) and sudden death.  

SCA is one of the main causes of natural death: 
in the USA, as about 325,000 adults die of SCA 
each year. SCA is responsible for half of all deaths 
due to heart disease [1], so the detection of PVC 
beats is critical in clinical cardiology [2]. Indeed, 

most SCAs could be avoided by obtaining an early 
diagnosis from ECG recordings. However, some 
heart disorders cannot be detected by analysing 
short ECG recordings and require long-term 
recording for diagnosis. The purpose of long-term 
recording (normally 24 hours) is to observe the heart 
function while the patients perform their daily 
activities and is known as ambulatory, or Holter, 
monitoring. The PVC beats can easily be recognised 
by eye on recorded ECG signals, because they are 
very different from normal heart beats. However, 
longer-term monitoring systems, such as Holter 
monitoring, record a large number of beats and 
demand automatic detection and classification.  

In the last few decades, several ECG beat 
classification algorithms based on different 
methodologies for ECG beat classification have 
been developed and implemented. For example, 
Chiu et al. [3] used correlation coefficients to 
recognise PVC beats, whereas Al-Shrouf [4] and 
Martis et al. [5] used wavelet transform and neural 
networks for ECG beat classification. Javadi et al. 
[2] used a combination of neural networks and 
expert systems to distinguish between normal beats 
and PVC beats, whereas Das and Ari [6] proposed a 
combination of S-transform and wavelet transforms 
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for classifying normal heartbeats, PVC arrhythmias 
and other abnormalities of the heart. Nikan et al. [7] 
applied pattern recognition for ECG arrhythmia 
classification, and Chen et al. [8] used a 
combination of projected and dynamic features for 
heartbeat classification. Elhaj et al. [9] used 
combined linear and nonlinear features of the ECG 
signals for arrhythmia recognition and classification. 
Surveys of heartbeat classifications for arrhythmia 
detection have been published [10],[11]. In the 
present paper, ECG beat classification is performed 
using a sliding window and the three-bit linear 
prediction error signal (LPES).  

The next sections introduce the linear prediction 
and the sliding window. The proposed method was 
detailed and the results and discussion was 
presented. 
 
 
2 Linear Prediction 

Linear prediction is one of the essential tools 
used in the digital signal processing field. It is the 
process whereby we attempt to predict the value of a 
sample x(n) using a linear combination of N 
previous samples [12]. 

Let x(n) be a wide sense stationary (WSS) real 
random process. The estimated (predicted) value is a 
linear combination of p samples and has the form 

∑
=

−=
p

k
knxkanx

1
)()()(ˆ

   (1) 

where p is an integer value called the prediction 
order, and a(k) are prediction coefficients k = 
1,2,…,P 
The estimation error, called the linear prediction 
error signal, is  
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The prediction error signal should have a minimum 
value “in the sense of a mean square”.   
The mean square of the error signal is denoted as: 
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The expected value for the square error signal is  
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Prewriting equation ( 1) in vector form : 
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Substituting equations (5–7) in (4 ), we obtain 
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Let us define the autocorrelation vector as: 
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and the autocorrelation matrix as: 
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Using equations (9) and (10), equation (8) could be 
written as: 
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Equation (11) is a quadratic function of the 
prediction coefficient vector a . The optimum 
predictor coefficients vector is the one that 
minimises this mean squared value.  
The gradient of equation (11) is 

2Ra-2r +=∇                 (12) 

Equalising the gradient in equation (12) to zero 
gives the necessary condition to get minimum 
values of  

2Ra-2r0 +=              (13) 

This gives the following normal linear equation 
rRa =                 (14) 

We define R(k) to be the autocorrelation function of 
the real WSS process x(n), that is 

)]()([)( knxnxEkR −=  

Using the fact that, for WSS )()( kRkR −=  
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we can rewrite equation (14) as  
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The autocorrelation matrix is a Toeplitz matrix, so 
the normal equation (15) could be solved using the 
Durbin recursive procedure, which is the most 
efficient method for solving this type of equation. 
The other issue is the choice of the predictor order 
P. The choice of the predictor order value depends 
on the purpose of the prediction process. For 
example, Frankiewich and Al-Shrouf [19] proved 
that the second order prediction (p = 2) is sufficient 
for ECG signal classification, whereas the third 
order is used for ECG data compression. However, 
the highest value of parameter p is required for 
system identification. Based on the work of 
Frankiewich and Al-Shrouf, the second order 
prediction (p=2) is used for ECG beat classification 
in the present study. 
 
 
3 Siding Window  

Figures and Tables should be numbered as 
follows: The sliding window is a technique used in 
discrete time signal processing for several purposes, 
such controlling transmitted data and anomaly 
detection in discrete signals. Let us consider a 
discrete time signal x(n) of length of N x(n) = {x(1), 
x(2)…..x(N)} [13].The goal of the sliding window 
is to generate a set of subsignals of x(n) with length 
q, having the highest number of unexpected changes 
in morphology in terms of the anomaly score. For 
this purpose, a sliding window with length q moves 
through the time signal and generates a set of 
subsignals. This results in M subsignals coming in 
the form 
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In each movement, the sliding window moves L 
time steps. Consequently, the number of 
subsequences, M, is 

1                                                            N qM
L
−

= +  

The values of the parameters L and q should be 
chosen based on the application to which the sliding 
window is applied. Using a low value for r (e.g. 
L=1) guarantees that no abnormal subsignals are 

missed, but the consequence of a high number of 
subsignals is greater time consumption. Conversely, 
using a high value for r (e.g., L=q) generates a lower 
number of subsignals and, despite the lower 
processing time, a risk remains of losing some 
anomalous subsignals. A trade-off between accuracy 
and processing time can be considered. The length q 
of the sliding window is an important parameter that 
should be selected based on the application purpose. 
Selecting a value of r as proportional to the length of 
subsignals is a reasonable choice, i.e. a higher value 
of r is selected for longer subsignals and a lower 
value of r for shorter subsignals. 

The present study considers the MIT-BIH and 
AHA arrhythmia data for shape anomaly detection. 
The MIT-BIH data set is composed of 48 half-hour 
annotated ECG signals. Four signals comprising 
some visible anomalies were selected from the ECG 
signals in this data set. The processing time is 
reduced by resampling the signal from MIT-BIH 
from 360 Hz to 180 Hz; however, the AHA signals 
are resampled from 250 Hz to 125 Hz. 
The length of the sliding window was set to around 
1.2 times the average length of the RR peaks to 
ensure that longer beats (e.g. PVC) can be 
incorporated into one subsequence. Moreover, the 
sliding window moves around 5% of the length of 
subsequences in each movement. After generating 
the subsequences, normalisation is employed and 
each subsequence is represented using its 
autocorrelation coefficients.  
 
 
4 Methods 
 The proposed automated classification system is 
depicted in Figure 1. I t starts with different pre-
processing procedures, followed by linear prediction 
and linear transformation; the last stage is 
calculation of the correlation coefficient and 
decision making. The work concerning each part is 
explained in detail in the following sections. 

 
Fig.1. Overall scheme of the proposed PVC 
detection algorithm 
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4.1 Pre-processing  
During recording, the ECG signal is usually 

disrupted by one or more kinds of noise or artefacts, 
such as: power-line interference, baseline drift, 
electrode motion artefact, data-collecting device 
noise and electromyogram (EMG) noise due to 
motion artefacts and muscle contraction [14],[15]. 
EMG noise is the factors that most severely affects 
the value of the ECG signal. The existence of any 
kind of noise on t he ECG signal reduces the 
accuracy of QRS detection and/or ECG beat 
classification; therefore, the precision of the 
diagnosis of cardiovascular disease will be 
decreased. To avoid this, noise should be 
eliminated.  

 
4.1.1 Denoising 

A second order error predictor could be treated as 
a finite impulse response filter (FIR) with transfer 
function H(z).  

)2()2()1()1()()( −+−+= nxanxanxne     (16)
 

21 )2()1(1)( −− ++= zazazH              (17) 

After calculating the optimal parameters a(1) and 
a(2) for several normal and abnormal ECG beats, 
the frequency response is tested and shows that the 
prediction error filter possesses a h igh pass filter 
characteristic. The magnitude response of the 
predictor filter for both normal and abnormal ECG 
cases is illustrated in figure 2. 
 

 
Fig.2. Magnitude response of the second order 
predictor 

Since the second order error predictor of the 
ECG signal serves as a high-pass filter, the low 
frequency noises have no effect on it; therefore, 
no high-pass filter is required. The only filter 
needed is a low-pass filter. In the present work, 
the ECG signal is passed through a low-pass 
filter with a cutoff frequency of 45 Hz, because 
the information above 45 Hz is not important 
for either the QRS or arrhythmia detection. 

4.1.2 QRS-complex Detection  
QRS detection is performed using the algorithm 

proposed by Pan-Tompkins [16]. The Pan-
Tompkins detector is the best known QRS detector. 
The algorithm consists of several stages: bandpass 
filtering with a centre frequency of 17 Hz, which is 
the estimated frequency of the QSR complex; a 
derivative filter to focus the high slopes; a nonlinear 
operation which focuses on the higher values that 
are mainly present because of the QRS complexes; 
and a moving average filter. The resulting signal is 
called the detection function (DF), which should 
possess a sm ooth peak in each ECG cycle 
corresponding to each QRS complex. 
To find the nth local maximum point, an adaptive 
threshold is determined, as follows: 

Thn = 0.85 ∗ max⁡(DFn−1)              (18)  

where Thn  is the nth threshold and max⁡(DFn−1) is 
the local maximum of the detection function 
corresponding to the previous beat. The first local 
maximum is defined as the maximum point during 
the first two seconds. The efficiency of the detector 
is increased by adopting two strategies: the search 
back strategy (SBS) and the turn off strategy (TOS). 
The SBS is used to avoid missing any low-
amplitude QRS, and involves reducing the threshold 
value and restarting the search for the local 
maximum. The SBS is activated if the RR interval 
exceeds a specified time: this time is two seconds in 
the proposed QRS detector. The TOS is used to 
reduce the computation time and is achieved by 
halting the search for the local maximum for 0.2 
seconds.  
 
4.1.3 Segmentation  

After detection of the QRS complex and 
localisation of the R peak, 50 samples are chosen 
from the left side of the R peak and 50 samples after 
it, to give a segment or beat of 101 samples. 
 
4.2 Three bit (five level) Error Signal   

Instead of the ECG itself, the beat classification 
puts an emphasis on the five level signal T(n). This 
signal is obtained from a nonlinear transformation 
of the second order linear prediction error, which 
transforms the prediction error signal to a set of five 
state pulse code trains relative to the original ECG 
signal, based on the following transformation 
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where E is the energy of the prediction error signal 
for given segment of a tested ECG beat. Each 
sample of the T(n) pulse can be written in a three bit 
word length (110, 101, 000, 001 and 010). The main 
advantage of the above transformation is that it can 
be implemented in a r eal time automated ECG 
classification. Figures 3 & 4 s how normal and 
abnormal ECG beats, their prediction error signals 
and their corresponding three bit signal T(n) taken 
from two different ECG records: N12 and V72 
respectively. 
 

 
Fig.3. a- ECG signal (N12), b- Linear prediction 
error signal, c- T(n) pulses 
 

 
Fig.4. a- ECG signal (V72), b- Linear prediction 
error signal, c- T(n) pulses 
 
4.3 Application of the Sliding Window 

In this paper, a sliding window is applied to the 
T(n) signal to detect abnormal ECG beats, namely, 
PVC beats. The sliding window parameters should 
be chosen to guarantee coverage of the QRS 
complex in each ECG beat. We fulfil this 
requirement, in this paper, by choosing a length of 

the sliding window q = 0.20 sec and a value for step 
L = 0.05 sec. 
  
4.4 Correlation based Classification 

Detection of abnormality in ECG signals in the 
time domain is mainly based on two objectives: 
detection of anomalies in the signal amplitude and 
detection of anomalies in the signal shape. 

For detecting anomalies in the signal amplitude, 
the Euclidean distance can be considered as a  
suitable similarity measure and the generated 
subsequences can be employed in classification 
process without any further preprocessing. 
Conversely, when detecting anomalies in shape is of 
concern, the generated subsequences cannot be 
employed directly. The reason is that the generated 
subsequences are not synchronised, so using the 
Euclidean distance function is not efficient as a 
similarity measure.  

In this paper, we confine the recognition of the 
abnormal signals to their shapes, so we eliminate the 
amplitude objective. The reason is that the 
amplitude aspect dominates in the five-level signal 
T(n). The signals, based on their shape information, 
are compared by representing each subsequence 
using a set of cross-correlation coefficients between 
the template beats and the tested one. The template 
beats are considered as a T(n) sequence of a normal 
ECG beat, as well as the T(n) sequence of the PVC 
beat.  
Considering xk as a subsequence with length q, its 
cross-correlation coefficient for lag s c an be 
calculated using (20). 
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In fact, the cross-correlation coefficient gives an 
estimation of how well the tested signal or its time-
shifted version matches the template. As a result of 
considering different values of time shifting (s = 
1,2,...,q -1), each subsignal is represented with two 
q-1 dimension cross-correlation coefficient vectors 
(Vn & Vab), where these vectors represent the cross 
correlation between the normal and abnormal 
templates, respectively. The tested beat is classified 
as normal if max[max(Vn)] ≥ max[max(Vab)]  
otherwise, beat is classified as PVC beat.  

 
 
 
 

WSEAS TRANSACTIONS on SIGNAL PROCESSING 
DOI: 10.37394/232014.2020.16.2 Anwar Al-Shrouf

E-ISSN: 2224-3488 16 Volume 16, 2020



5 Results and Discussion 
The ECG signals from the AHA and MIT-BIH 

databases were used to examine the applicability 
and efficiency of the proposed PVC classification 
algorithm. The results obtained were compared with 
the results from the study by Awandekar et al. [17] 
and the results obtained by Al-Shrouf [18]. A 
meaningful comparison was achieved by using the 
same two performance parameters: sensitivity and 
specificity. Sensitivity measures the accuracy of 
detecting the PVC beats, while specificity represents 
the accuracy of rejecting normal beats as non-PVC 
beats.  
The sensitivity parameter Se is calculated using the 
following equation: 

(21)                 %100*
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e FT
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The specificity parameter Sp is calculated as follows: 
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where 𝑇𝑇𝑃𝑃, 𝐹𝐹𝑁𝑁  and 𝐹𝐹𝑃𝑃 are true positive, false negative 
and false positive, respectively. True positive is the 
number of true classified PVC beats, false negative 
is the number of PVC beats not classified as PVC 
beats and false positive is the number of non-PVC 
beats that are classified as PVC beats. 
The results of the PVC classification testing are 
shown in Table 1.  
 
Table 1. PVC classification results 

Database 
 ECG 
record 

Nr. 
of 

PVC  
beats TP  FP  FN  Se 

 
Sp 

 

 

 

MIT-

BIH  

  

105 29 26 1 3 89.7 96.3 

106 460 443 1 17 96.3 99.8 

119 364 349 4 15 95.9 98.9 

124 47 44 0 3 93.6 100.0 

200 700 678 4 22 96.9 99.4 

233 698 677 4 21 97.0 99.4 

AHA  
V71-V76 81 74 1 7 91.4 98.7 

Total 2379 2291 22 88 96.3 99.0 

The results obtained by Awandekar et al. [17] were 
Se = 96.2% and Sp = 93.6%. However they did not 
mention which ECG records they used or the 
number of beats they considered. In this paper, the 
testing data were the same data used by Al-Shrouf 
[18]. We achieved a sensitivity of 96.3% and a 
specificity of 99.0%, whereas Al-Shrouf achieved 
97.4% and 99.1% for sensitivity and specificity, 
respectively. The more accurate results obtained by 
Al-Shrouf may be caused by the number of features, 
so future work will integrate the present method and 
the method in [18] to achieve a m ore accurate 
classifier. 
 
 
6 Conclusion 
 This paper proposes a new concept of ECG beat 
classification to recognise PVC beats. The 
introduced classification algorithm is based on a 
three bit pulse signal T(n), and a sliding window. A 
three-level signal is obtained using a nonlinear 
transformation of the second order linear prediction 
error signal. However, a sliding window was used to 
generate a se t of subsignals from the T(n) signal 
having highest number of unexpected changes in 
morphology in the QRS region. 
 PVC beats were recognized by taking the 
maximum value of the cross-correlation coefficients 
between the generated subsignals of a tested T(n) 
signal and the template T(n) signals. Employing the 
five-level error T(n) signal was simple, effective and 
robust. Only bit samples of the signal were required, 
instead of the original signal, which used two bytes 
for each sample. The proposed algorithm was tested 
using ECG signals from the MIT-BIH and AHA 
databases. Six ECG signal records were taken from 
each database, containing a total of 11,901 beats. 
The obtained results show that the proposed system 
can effectively and accurately recognise PVC beats. 
However, further feature extraction and artificial 
intelligence techniques should be used to improve 
the efficiency of the PVC classifier in the future. 
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